Презентация тепловое действие тока

1 слайд:

Презентация на тему: Выполнила работу: Хамедова Хасиба 10 класса «А» «Тепловое действие тока»

Электрический ток. Электрический ток нагревает проводник. Объясняется оно тем, что свободные электроны в металлах, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока увеличивается скорость колебаний ионов и атомов и внутренняя энергия проводника увеличивается. Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи. Значит, количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока. Мы знаем, что работу тока рассчитывают по формуле: А = U·I·t. Электрический ток в проводнике

Закон Ома. Обозначим количество теплоты буквой Q. Согласно сказанному выше Q = A, или Q = U·I·t. Пользуясь законом Ома, можно количество теплоты, выделяемое проводником с током, выразить через силу тока, сопротивление участка цепи и время. Зная, что U = IR, получим: Q = I·R·I·t, т. е. Q=I ·R·t Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени. К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский ученый Джоуль и русский ученый Ленц. Поэтому сформулированный выше вывод называется законом Джоуля - Ленца. Закон Ома для участка цепи

Задача на закон Ома для участка цепи.

Устройство лампы накаливания. Рассмотрим устройство лампы накаливания. Нагреваемым элементом в ней является свернутая в спираль тонкая вольфрамовая нить 1. Вольфрам для изготовления нити выбран потому, что он тугоплавок и имеет достаточно большое удельное сопротивление. Спираль с помощью специальных держателей 2 укрепляется внутри стеклянного баллона, наполненного инертным газом, в присутствии которого вольфрам не окисляется. Баллон крепится к цоколю 3, к которому припаян один конец токоведущего провода в точке 4. Второй конец провода через изолирующую прокладку 5 припаян к нижнему контакту. Лампа ввертывается в патрон. Он представляет собой пластмассовый корпус А, в котором имеется металлическая гильза Б с резьбой; к ней присоединен один из проводов сети. Патрон контактирует с цоколем 3. Второй провод от сети присоединен к контакту В, который касается нижнего контакта лампы. Лампы накаливания удобны, просты и надежны, но экономически они невыгодны. Так, например, в лампе мощностью 100 Вт лишь небольшая часть электроэнергии (4 Вт) преобразуется в энергию видимого света, а остальная энергия преобразуется в невидимое инфракрасное излучение и в форме тепла передается окружающей среде.

Коэффициент полезного действия (КПД). Для оценки эффективности того или иного устройства в технике введена специальная величина - коэффициент полезного действия (КПД). Коэффициентом полезного действия называют отношение энергии, полезно преобразованной (работы или мощности), ко всей потребленной энергии, или затраченной (работе или мощности):

10 слайд

Часто КПД выражают в процентах (%). Вычислим КПД электрической лампы накаливания по данным, приведенным выше: h=4/100=0.04=4%; Для сравнения укажем, что КПД лампы дневного света примерно 15%, а у натриевых ламп наружного освещения около 25%. Схема питания лампы дневного света

11 слайд

Существует большое число электрических нагревательных приборов, например электрические плиты, утюги, самовары, кипятильники, обогреватели, электрические одеяла, фены для сушки волос, в которых используется тепловое действие тока. Основным нагревательным элементом является спираль из материала с большим удельным сопротивлением. Она помещается в керамические изоляторы с хорошей теплопроводностью, которые изготовлены в виде своеобразных бус. В приборах, предназначенных для нагревания жидкостей, изолированная спираль помещается в трубки из нержавеющей стали. Ее выводы тоже тщательно изолируются от металлических частей приборов. Температура спирали при работе нагревательного прибора остается постоянной. Объясняется это тем, что очень быстро устанавливается баланс между потребляемой из сети электроэнергией и количеством теплоты, отдаваемым путём теплообмена окружающей среде.